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In a queuing process, let l/X be the mean time between the arnvals of two
consecutive umts, L be the mean number of units in the system, and W be
the mean time spent by a unit in the system It is shown that, if the three
means are fimte and the corresponding stochastic processes strictly station-
ary, and, if the arrival process is metrically tranBitive with nonzero mean,
then L=\W

HEURISTIC arguments are sometimes given to show that, in a steady-
state queuing process, the following formula holds

L=XTF, (1)

where L = expected numher of umts m the system
TF = expected tune spent by a umt m the system

l/X = expected time between two consecutive arnvals to the system

Expression (1) is of interest because it is sometimes easier to find L than
TF (or vice versa) m solvmg a queuing model

A bnef plausibihty argument for rather general vahdity of (1) is given
by MoKSE (reference 1, p 22) He goes on to prove it m a number of spe-
cific models GALLIHEH'^' estabhshes it for the case of Poisson arnvals
which have a rate independent of queue length and which come to a multi-
ple channel facility having a first-come, first-served disciphne We shall
prove it under assumptions considerably more general

By a queuing process will be meant a mathematically specified opeiatioii
in which units amve, wait, and then leave It is presumed that the opera-
tion thereby generates three well-defined stochastic processes

{«(, — « « < « ) =the number of umtB m the system at time t
[WT, — «I <r < M 1 =the time spent in the system hy the rth arnving umt
JTr, — =0 <r < 00 } =the tune hetween the arrivals of the rth and (r-|-l)st umts

to the system

These processes are defined on some space Q and any pomt w€fl selects a

* This work was supported m part by the Air Development Center, Wright-
Patterson Air Force Base, United States Air Force, under Contract No AF33(616)-
6446
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function and two sequences,

which represent a specific realization of the quemng operation over ail
time The random vanables n,, Wr, and T, are nonnegative

The time of amval of the rth umt will be denoted U and is defined by

For convemence we choose

tiiu)^O, <o(co)<0

The following relation is taken to be part of the defimtion of a quemng
process Let

fl for x^O,
for x<0,

then, for any w, n,= X)iS uit—i,) uit,-\-w,—t) (2)

This relation says that the number in the system at < is the number of
umts whose time of amval is before (or equal to) t and time of departure
IS after (or equal to) t

THEOBEM 1 If, m a queuing process, (t) each of the stochastic processes
nt, Wr, and T, IS stndly stationary with finite vfiean, and (tt) the T, process is
metncally transitive with mean T=l/\>0, and, if we let

If*
(w) =hm - / n,iu) ds,

J-»oo t Jo

1 "
=hm — ̂  Wj(u),

then, with probability 1, the limits m (3) exist, are finite, and satiny

Wiw) = Tiu)Liw) (4)

The existence and fimteness of the limits is an immediate consequence
of the ei^odic theorems for stnctly stationary stochastic processes (see
DooB, reference 3, pp 465 and 515).

Consider a specific point w€Q Let tm denote the length of the mter-
val [0, <m(w)) Define

1 r'"
^iu) = - I n,(oj) ds,

tm Jo

1

Z



Fmmula 385

In order to take the limits of (5) amultaneously, we first show that as
m-*«>, <«."*« w p 1 (with probabihty one) By the ergodic theorem,
the metnc transitivity of the T, process, and its nonzero mean, we have
l/r«(w)-»>l/r(«) = l / r<oo w p l Let a=ro(a>)-<i(co). We see
that 0 < a < » w p 1 Then l/r,»(a))=m/(<,«-fa)-*hmm/<» w p 1,
hmm/im < «> w p 1, so that m-*« unphes f„-» » w p 1

Fig 1. Part of a specific queuing realization w, showing the number m the sys-
tem at time s,n,, the wait in the system for the rth arrival, Wr, and the interarrival
time started by the rth arrival, T, (The figure is drawn for the case of departure
in order of arnval, but this is not required for the proofs m the text)

Integratmg (2) for fixed co gives

(6)

where K(X) = x for a;>0 and v(x) =0 for a;^0 The situation is illustrated
m Fig 1 The area under the curve n, from 0 to <„ is, except for certam
cany-over effects at the ends of the interval, the sum of the waitmg tunes
of the umts that amved dunng the mterval These carry-over effects are
indicated by the areas A and B, which correspond to the last two sums on
the nght m (6)

Dividmg by m and usmg (5) gives

-(a/m) L^-{l/m)

The last two terms on the nght can be shown to go to zero w p 1 as
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m-*' 00 In the last term the sum consists of a finite number (no) of finite
terms except on the union of (no-|-l) w-sets of probabihty zero Thus the
sum IS fimte w p 1, and, since it is independent of m,»the desired hmit is
zero w p 1 In the next to last term, L,»-*^L(a)) < oo and a/m-*O w p 1
Thus

TF(co)-r(a))L(co)=lun(l/m) E ; s - K ^ . + i . - U ^ O w p 1

If now we consider the interval (<_,»(co), 0] and define L_m, W^^, and
T_m analogously to their counterparts above, e g ,

f n
Jt-m

then the symmetry of the ergodic theorems with respect to time and argu-
ments the same as used previously yield

Therefore, TF(co) = r(a))L(a)) w p 1

as was to be shown

THEOREM 2 Let

then, under the hypotheses of Theorem 1,

W=TL

The ergodic theorems state that for almost all w the hmits (3) are the
conditional expiectations

where da, 3b, and ĉ are the Borel fields of mvanant subsets for the corre-
spondmg processes Since the T, process is metncally transitive.

and (4) becomes Wio}) = TLiw) w p 1

Integration over Q gives, by definition of conditional expectation,

W=TL

as was to be shown

DISCUSSION

THEOREM 2 is the pnncipal result for apphcations and shows that (1) is a
vahd relation among phase averages Theorem 1, on the other hand, is
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perhaps more basic for it shows that an eqmvalent of (1) using tune aver-
ages holds with probabihty one for any specific realization of the queumg
process

The results are remarkably free of specific assumptions about arnval
and service distributions, independence of lnteramval times, number of
channels, queue discipbne, etc A requirement is made for stnct station-
anty (although this is probably not the weakest requirement possible), but
the steady state m most current queuing models would appear to be stnctly
stationary Similarly, in cases of practical mterest, the amval process is
likely to be metncally transitive

Notice that the defimtion of what constitutes the 'system' is left flex-
ible In conventional usage, the number of units in the system refers to
the number in queue plus those in service The theorem here, however,
only reqmres consistency of meaning m the phrases, 'number of units in
the system,' 'time spent m the system,' and 'amval to the system ' Thus,
if we choose to label the queue as the system and let Lg and PT, refer to the
mean number and mean wait m queue, we obtain

Similarly, if we have a model with pnonty classes ^ = 1, 2, , p, and let
L, be the mean number of pnonty i units present, 1^, the mean wait of a
pnonty i unit, and 1/X, the mean mterarnval time for pnonty i units,
then

Morse (reference 1, p 75) asks when (1) does not hold As an ex-
ample, we cite a type, of model, used in his book and elsewhere, m which
amvals come with rate X but not all arnvals join the system Then (1)
does not hold However, inspection of the theorem shows that (1) will
hold if X IS redefined to include only those amvals that join the system
Alternatively, we can say that the units that do not join have a zero wait-
ing time m the system and include them in the calculation of W This
too will make (1) hold

THE AUTHOR thanks DR H NEWTON GARBER for several constructive
suggestions about the proof In particular, equation (2) and its explicit
definitional implications are his
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