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PART (I)

BOUNDARY LAYER IN COMPRESSIBLE FLUIDS

The solution of flow problems in which the density
is verieble is in generel very difficult; hence, every case
in which an exsct or even an epproximate solution of the
equations of the motion of compressible fluids can be obtained
has considersble theoreticel interest, Several suthors noticed
that the theory of the lsminar boundery layer can be extended
to the case of compressible fluids moving with arbitrarily high
velocities without encountering insurmountable mathematiceal
diffioulties. Busemann (Ref. 1) established the equations and
calculated the velocity‘pfofile for one speed ratio. (By épeed
ratio is understood the ratio of the sirspeed to the velooity
of sound.,) Frankl (Ref. 2) alsc mede an analysis of the same
problem, however, it is complicated emnd depends on several
arbitrary epproximations. Von Karmen (Ref., 3) obtained a
first epproximetion by a simple but epparently not sufficiently
exact calculation., Hence, in Seotion (I), & better method for
the solution of the problem is developed.,

The boundary layer theory for very high velocities
is not without practicel interest. First, the statement can
be found often in technicel and semi-technical literature on
rockets and similer high-speed devices thet the skin frietion

becomes more and more significant at high speeds, Of course,
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it is known that.with increasing Reynolds llumber, the skin
friction coefficient is decreasing, i.e.,, the skin friction
becomes relatively small in coﬁpafison with the drag produced
by weve formation or direct shock., Since high-speed flight
will be performed mostly et high eltitude where the air is of
very low density, so tha® the kinematic viscosity is large,
the resultinsg Reynolds Fumber will be relatively smell in
spite of the high speed.

Another inberesting point in the'theory of the
bourdery layer in ecompressihle fIluids is the thermodynemic
aspect of the problem, In the case of low speeds the in-
fluence of the heat produced in the boundary layer can be
neglected bobh in the colculation of the drap snd of the heat
transferred to the wall, 1In the case of high speeds, however,
the heat produced in the boundary layer is not negligible,
but determines the dirsclion of heat flow. In Section (II)

a few simple exemples of heat flow through the boundary
layer are discussed.

It hes been found necessary in most parts of this
anelysis to meke the mssumption of laminar flow. This assump-
tion was found necessary beczuse of the lamentable state of
knowledge concerning the laws of turﬁulent flow of compressible
fluids at high speeds. This assumption is somewhat justified

by the fact that - as mentioned above - in meny problems where
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the }esults of this pvaper can be applied, the Reynolds ljumber
is relatively small, so that e coﬁsiderable portion of the
boundary layer is probably, de facto, laminar. Ackeret (Ref.L)
called attention teo the possibility that the stabllity
conditions in supersonic flow mirsht be guite different from
those occuring in flow with low velocities.

Recently Kichemenn (Ref.5) studied the stability
of o linear profile near a wall under small sinuous disturbance,
and showﬁ?that as the veloecity ratio increases, the flow is
unstable at increasing wave length of disturbance. However, he
assumed that the gas is non-viscous and the séund velocity 1is
constent. DBoth assumptions tend to limit the usefulness of the
theory, especially the later ore. DBecause the constancy of
velocity of gas implies the constancy of gas temperature, which
unfortunately is far from the truth for a perfect gas as will
be shown in later calculations of this section., 1In spite of
these uncertainties, some celculations of this section, es
will be pointed out, are also applicable to turbulent flow.
In other cases, as in the calculation of drag, the assumption
of leminar flow surely gives at least the lower limit of its
value.

Section (I)
If the X -axis is teken along the plate in the

direcbion of Luhe free slream, Lhe ‘y -axis perpendicular to the
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plate, and W end ¥ indicate the X - and Y components
of the velocity at any point; then the simplified ecuation of

X . . . S . D e
motion in the boundary layer is , <. Jloivge bl 0

sudl + pris .—_;yﬁ-//éa%) (1.1)

where both the density 59 end the viscosity ¢ eare variables.

The equation of continuity in this case is.
1.2
G+ (=0 (1.2

A third equation determines the energy bslance between
the heat produced by viscous dissipation and the heattransferred
by conduction and convection, With the same simplification eas

used in Eys.(l.l and (1.2), one can write

2 J e
pus (67) +pv37 (6T = 570 E0) 1 5f
(1.3)
where Ck is the specific heat at constant pressure, and,%
is the coefficient of heat conduction., If Prendtl's number,
Quﬁb/él is assumed to be egqual to 1, then it can be
easily shown that both Egs., (l.1) and (1.3) can be satisfied by
equating the tempersture T to =& certain parasbolie function of

the veloeity « only. Indeed, introducing §777;= 74Q%)
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into eguation (1.,3) and replacing /L by /4/(/ , one

cbtains

{ﬂé I ) = 2)tt0) s F e )

/
Hence Eq. (1.3) is reduced to Eq. (1.1) if ////[)-:: —/

or

L7 = _ s

/’T (/) + G-
where C/ , Cz are constants, UVenoting the wall
temperature [ U= 0) by 7;[ and remembering that
T=17, for u=[/ where [/ = free
streem velocity, C’, (:’z can be expressed in terms

s

of 7;,_ 7; and

_:Z:______T_,o_f_, = 7/;+‘Z_/M //~ /[/



Vifferentiating Eo. (1l./4) on:obteins
Syl L2 ST /a/z
1,00 = Ul T ) [, ()

where the subecript 4#r refers to conditions existing at the
/
suriace of the plete., Tow [ﬁw/ﬂ/)w is elways

positive; therefore, if [//——/)/2]/‘12 ?(Z;//Z/ -7

heet is trensferred from the fluid to the well; if

[(7=1)/2] 4 = Tw)75 =7

there is no heat transfer between the fluid and the well; and

[ip-1)e] 1P < Tu/T 1

heat is transferrad from the wall to the fluid. If there 1is

if

ro heat transfer, the enerzy content per unit mass

(/M/Z//Z) 7L é/'o 7— is constant in the whole

rerion of the boundary layer. (Ref.0)

Ihe pressure being constant the relation between

f and T is,

o
f = ‘ﬁ_:f_—- (1.6)
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The expression for the viscosity based on the kinetic theory

of gases is

L
s {7?} (1.7)

However, the following formula is in closer agreement with

experimentel data

0.76

-
M= /M” /7; (1.7e)

Busemenn (Ref. 1) calculated the limiting case for
which [(/——/)/_Z/Mzz (Z;;//Z) -/ using Eq.
(1.,7) and found that for a high Mach's number, the velocity
profile is approximately linear. Von Karmen (Ref. 3), using
the linear veloeity profile, the integral relation between

the frictiorn and the momentum, end Eq. (1.7) found that

6, Frictional drag per unit width of plate

/ ( ﬁ] U z//Z } X length of plate

_ N/t L= py?
Qﬁ,ifx Z/HZ /

The dimensions quantity @ shown in Teble (1l.1) is a

% (1.8)

function of Mach's mumber only.

However, if Eq. (1.,7a) is used, then



-0.12

/] ‘ ~1
o7 {7+ M7

M
I\

(1.8e)

Table l.1

0 1 2 5 10 i

M
e 116 1.20 1.25 1.39 1,50 1.57

It is evident that this linear approxmiastion is not
setisfactory for small velues of Mach's number. For M=0 |,
the case is the same as the Blasius solution (Ref. 7) for in-
compressible fluids for which @ is 1l.328.

To solve the problem more rigorously, one has to
resort to Eqs. (1l.1) and (1.2). By introducing the streem

funection yy which is defined by

Y R A )
’Jﬁ‘?“"g’jl 5, F¥4

the equation of contimity, Eq. (1.2), is satisfied sutomatically.
Now if in Eq. (1.1) /;ﬁj is introduced as the independent
veriable as was done by von Mises (Ref., 8) in his simplification

of the boundery leyer equation for incompressible fluids then

J _ a ’_@_,’Z,,___ﬁ _2
£ = = A

w ~$w - 5T
whers )L is & coordinate measured in normal direction to
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ZAD coordinate, Using these new coordinates, the following

relations exist

)Ddax TSV @é = J4 397[;

_ 4
24 U 7=
/M /—‘f—g~ 7P
therefor Eq. (1l.1) oan be written as
j,&:j.[ s, 04
A7 #Ms %;# (1.9¢)

Eq. (1.92) cen be put into non-dimensional form by

introducing the following set of new quantities:

W= u/U
= /L (1.9b)
w (Ol S f = (VL R
§¥= /s,

wF = i,

where ZJ is & convenient length, say length of the plate,
end /7 is the corresponding Reynold's Number, then Eq. (1.9s)

becomes

Mak 37/* //L 5*/4* ?z%/

(1.9)
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Eq. (1.9) can be further simplified by introducing

& new dependent variable § = W* o n* » then

"f;’f‘c‘ [ﬂf/u*é‘)

This can be solved by the method of successive

appro:d.mations. As f* and /(/* are functions of tempersaturse

(1.10)

only as shown in Egs. (1.6 and (1.,7) or (1.7a) and the temper-
sture is a function of dz* then by stearting with the known
Blasius' solution (Ref. 7) the right-hand side of Eq. (1.10)

can be expressed in terms of C +« Therefore, one can write

" f /u*g f/g) end Eq. (1,10)becomes —ngjéé _/C[%/g)//é']

Consequently, the solution of Eqe (1.10) is

4 ¢
F _ ) S
6\0/ 7(‘ /; wherae /[_ = e \[ f

(1.11)
end C is determined by the boundary condition that st { = o°

¥ /. [.E R
=1 - Jf, Ac (1.11s)

In the actual computation, two methods of evaluating
the integrals in Egs.(1,11) and (1.1la) are used, For small
values of g , ¢ <02 , the function /t” and

7/'/(,) are expanded in a power series of ; . Due to

the uniform convergence of the power series for sufficiently
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smell velues of &, the integration isvcarried out term by
term, For velues of g >0 2 , numerical integration is
used, |

A second approximation can be made based upon the
value of a/* obtained from Eq. (1.11). It has been found
in tﬁe cases investigeted that the third end fourth approxime-
tion gives sufficient accuracy, if the velocity profile of next
smaller Mach's numbef is used as the starting point of calculet-
ing the velocity profile of next larger Mach's mumber.

Having computed the final  y # , the 4
corresponding to l&* can be calculeted in the following
wey:

It is known from Eq. (1.9b) that

PRV 5 /A
Vn* Wyt

Then remembering the definition of w , one has

% _ AR
WE a*

Sy)l‘ w¥

However due to the smell slope of streeam lines,



Hence

(1.128)

ER|
!

4/73’#_ Y s
o n* - A po f”&ﬂ/ (1.12)
s,

Here the expansion of

M ’F/é* in a power
series for small wvelues of Z:' is especially useful due to the
singularity of integrand at g =0 .

The skin friction cen be computed by using momentum

reg = - //:f“/y’”’%//,/:;

1aw, ive-’

Using Eq. (1.12e), on hes

{7 4/7?4/5

##

thus

o= [LeV [

A=l

«]P=



But ZL*2= A ~ X therefore
[/ L
Hence

Thus the

skin friction coefficient can be computed as
, D Z(/ (1-?)dS
—_ e————— — o
= 3 =
7L VR (1.13)

The velocity profile, the tempersature distribution,
snd the frictional drag coefficient are caleulsted for different

valuee of the Mach'!s number of the free stream, for the case

[G-Ve JMP = (T /7)- 7

using the approximate viscosity reletion of Eq. (1.72). The
results are shown in Figs. 1.2 and 1.3. The velocity profiles
for high speeds are very nearly linear, but it cen be seen that
the wall temperature for greeter Mach's numbers is very high,
If the free stream temperature is L0°F,, then the wall tempera-
ture will be 1600°F., 3620°F., 6540°F., and 10,170°F. for
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Mach'e numbers of L, 6, 8, and 10, respecéively. Therefore,
there is no doubt that the law of viscosity as expressed by

Eq. (1,72) will not hold, Alsovat such high temperatures, the
heat transfer due to radietion cannot be neglected, The effect
of radiation will be the equalization of gas temperature. In
the extreme case of complete equalization, the temperature
will be constant throughout the layer and due to the assumed
constant pressure throughout the field, the density and viscosity
of gas will be slso constsnt throuhgout the field. Then the
velocity profile will be again that calculated by Blasius for
incompressible fluid., By this reasoning, the actual veloocity
profile for lerge Mech's mumber when radietion cannot be
neglected is something between the Blasius profile end thet

shown in Fig. 3.

The chenge in the constant é; A/?Z_ is

epprecieble, but not great. It decreases from 1.328 for
ka =0 to 0.975 for M= 70 , or sbout 30

percent., However, for O << M < 3 the chenge of the

constent is very samall,

Fig. 1.2 also shows that Eq. (1l.8a) which was
obteined by using the linear epproximation is fairly mccurate
for very high Mech'!s numbers.

As examples, eonsider first a projectile end

second, & wingless sounding rocket, Taking the diemeter of
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the projectile to be 6 in., the length 2l in., the velocity
1500 ft./sec. and the altitude 32,800 ft. (10 km.), then the
Reynold's Number based on the totel length is 7.86 X 106
and the speed ratio is 1,52, From Fig 1.2 the skin friction

coefficient is

4; = (1.286 X 1623)/ 7 +86.=0,000459

Changing the skin friction coefficient (based on the skin
area) to the drag coefficient (besed on the maximum ecross-
. section), on'obtains

Cy,= 0.0055
The drag coefficient due to wave formstion taken from Kent's
experiments (Ref. 9) is f‘pﬂ/ = 0.190
Therefore the ratio of skin friction to wave resistance is
0.0055/0.190 = 0,029,

However, the ratio is greatly changed in the case
of the rocket. Taking the diemeter of the rocket to be 9 in.,'
the length 8 ft., and the altitude of flight 50 km. (see
Appendix) (164,000 ft.), the velocity 3400 ft./sec., then the
Reynoldt!s Number besed on a density ratio at that altitude of
0,00067 end temperature 25°C, (deduced from date on meteors)
is 6.1 x 105, and the speed ratio is 3.00. From Fig. 1.2,
the skin friection coefficient is
[ = (1213 X 1o'z)m = 0.00360

Then



The drag coefficient due to wave formation from Kent's experiment

(Ref. 9) is

CDW =  0.100

Therefore, the ratioc of skin friction and wave
resistance is mow 0,123/0,100 = 1.23. If the boundary layer
ig pgrtly turbulent, the ratic will be even greater., This
shows clearly the importence of skin friction in the case of a
slender body moving with high speed in extremely rarified air,
It also disproves the belief that wave resistance would alweys
be the predomineting part in the totel dreg of a body moving
with a veleoecity higher than that of sound. The reason under-
lying this fect can be easily understood when one recalls that
the wave resistance of a body is approximately directly pro-
portional to the velocity, while the skin friection is proportional
to the velocity'raised to a power between 1.5 and 2, Therefore,
the ratioc of skin f?iction to wave resistence increases with 'bhe
speed., With very high velocities end high kinemetic viscosity,
the wave resistance may even be a negligible portion of the
total drag of the body.

Section (II)

In order to point out the thermodynamic aspect of

the problem two cases will be considered: the flow of & hot

fluid along a surface which is kept at a constant temperature

inferior to that of the fluid, and the cese of a hot wall
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cooled by a fluid of lower temperature. The problems treated

in this part have been discussed before in two very interesting
pepers by L. Crocco (Ref. 6). Hé especially gives an elegant
treatment of the cooling problem in the cese of very high
veloeities ("Hypersviation"), The suthor feel s that his treet-
ment is somewhat more gemnerel and extended then Crocco's previous
analysis,

An interesting general relation between the heat
transferred through the well and the frictionel drag cen be
obtained using the assumption that Prandtl's number, i,e., the
ratio go /é // /L » is equal to unity. The same
assumption wes used also in the previous celculations. It is
remarkable tﬁat the relation holds also as well for lsminar as
for turbulent flow, The heat flow % per unit time end unit
area of the wall surface is

% = /ZW /27;/5%)4/
and the frictional drag - per unit area is

Using Eq. (1.4) the ratio ¢ / /A can be calculated from

the relation

T rr-2u), 77 sz
%’%7[// 7, 7L'ZZ'*/%/ (1.1k)

where 7; is the absolute temperature, and Z/ the

velocity of the fluid in the free stream, 7/, the ebsolute
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temperature at the wall, /420_ and /Aeuf are the heat con-
duction and viscoeity coefficients of the fluid corresponding
to the wall temperature end .Z%Z denotes Mach's number,

- Substituting M =0 one obteins from Eq. (1.1k)

I A T G T)
7T 4, U T

This is the relation known as Prandtl‘'s or G. I. Taylor's
formule, first discovered by O. Reynolds. Hence Eq. (1.1h)
gives the correction of this result for compressibility effeocts.
In the case Z: > 72;- i.e., when the wall
is colder than the free stream, the effect of compressibility
is to increase the heat transferred through the wall. However,
it would be erronsous to interpret this result as an "improve-
ment™ in cooling because at high speed the heat produced in the
boundary layer is of the same order as the heat trensferred
through the wall, In order to determine the efficiency of the
couvling a complete heat balance must be made, For this purpose
Eq. (1.1l}) does not give sufficient information snd the velocity
and the tempersture distribution in the boundery layer must be
- compubted. ©OSuch calculations were carried out for the particular
assumption ;;; = 7;}4% i.e., for the particular case

in which the absolute temperature of the wall is kept constant



at a value equal to one-fourth of the temﬁerature of the hot
fluid. With the same assumption for the variation of /# as
in Section (I), the results shown in Fig. 1.2 and Fig. 1.4 were
obtained, The variation of Cf" A/E with ,M is
similar to that obtained in the case without heat conduction
through the wall, Also the highest temperature in the boundary
layer is very high for extreme Mach numbers, However, the
temperature maximum ocours some distance from the wall,

The heat transferrsd from the boundary layer to the
wall can be calculated as follows:

By means of Eq. (1.122), one has

L
Henoce D 7
Rt Sy |29

L
! R Sw 4] _@‘/,_@
N AR A A A
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Therefore, = combining the above two equetions,

(1.16)

-
i LB

Using Eq. (l.72) and substituting Eq. (1.16) into Eq. (1.5),

then

0Ty _ K AR
(’f)w / ZL’/;Z; (1.17)

4
where f(/ = /4‘0'76’/2//0-757‘ é_ 2/4/_@"9 , &S given

in Teble 1.2, Therefore, the heat transferred to a strip of

unit width of the wall of length L per unit time is equal to

_ 0D s K AT u
Q, J, //LW)W/X— o /4/7

Now the incorease in heat content of the gas per unit time by

flowing from X =7 to Y =/ can be calculated as

-20-



o

] = / / ; - /. °;’ ¥
L= 1904 (T ayf ST [
- 4 W;@o/ (- T - %%)754//7 / O-7 ke

(1.19)

Aol )T (-7 < KA TR

The viscous dissipation of gas in the boundary layer of unit

width plete per unit time is thus

@ = é‘/ * QZ (1.20)

Table 1.2

-4
[l
[

0 1.53
1 1.93
2 3,12
5 10,53
10 33498




The total heat balance at different Mach's numbers
is shown in Fig. 1l.5. The "dissipation" curve represents in
dimensionless form the heat produced by friction per unit time
and unit width of the plate, The lower curve shows the increase
or decresse) of the heat content per unit time end unit width,
The difference of the ordinates corresponds to the heat trans-
ferred through the wall, It is seen that cooling takes place
for M < 2.6. Beyond this limit more heat is produced
by friction than the amount which can be transferred to the
wall end, as a matter of fact, the fluid is heated,

In the case 75;, ;7'7; i.e., when the
well is hotter than the free streeam, the ratio between the
heat transfer end the drag decreases with increasing Mach's
mmmber, This is shown in Fig. 1.6 where the ordinate represents
the ratio between é&/Z' with compressibility effect
(mcecording to Eq. (1.1})) to ¢/2‘ without compressibility |
éffect (according) to Eq. (1.15)). The calculation was carried
out for & gas temperature of - 550 F, and a wall temperature of
180° F. and 300°F, It is seen that there is mo cooling in the
former case for A/ > 1,69 end in the latter case for

M > 2,08, However, the decrease of cooling efficiency
is appreciable even at much lower speeds, This emphasizes the
benefit of the reduction of the speed of cooling air and the

relatively poor efficiency of cooling surfaces exposed directly
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to a high-speed airstreem. The curves in Fig, 1.6 being
derived from Eq. (1l.1l;) apply to leminar as well as to

turbulent motion,

—»23‘



APPENDIX TO PART (I)

ON THE VALIDITY OF THEORY IN VERY RAREFIED AIR

The hydrodynemic equation holds so long &s the mean
free path of the molecules is smell in ocomparison with the
thickness of the boundery layer., For this case the thiockness
of the boundery layer is zero at the nose, however, at a
distance 3 of the length of the rocket it already amounts to
3.2 cme, while the celculated mean free path of the air molecules
at the altitude oconsidered is sbout 1,1 X 10 cm, Hence it
appears that even for this case the theory can be safely applied.
This conclusion is substantiated by the experimental results of
H. Ebert in "Darstellung der Stromungsvorgange von Gasen bei

q&}érigen Drucken mittels Reynoldsscher Zahlen", Zeitschrift fur

Physik, Bde 85, S. 561-56l, 1933,



1.

2,

3

L

De

6o

Te

8.

9.

REFERENCES ON PART (I)

Busemann, A., Gas-stromung mit leminaren Grenzschicht
entlang einer Platte, Z.A.M.M., Vol, 15, S, 23, 1935,

Frankl, Laminar Boundary Leyer of Compressible Fluids,
Treans. of the Joukowsky Central Aero-Hydrodynamical
Institute, Moscow, 193, (Russian).

Kermen, Th, von, The Problem of Resistance in Compressible
Fluids, V. Convengo daells Foundazione Alessandro Volta
(Tema: Le Alte Velocita in Aviazione), Reale Accademia
D'Italia, Rome,

Ackeret, J., Uber Luftkraft bei sehr grossen Geschwindig-
keiten inshesondere bei ebenen Stromungen, Helvetioa
Physioca Acta, Vol. 1, S. 201-322, (1928).

" m
Kuchemann, D,, Storungsbewegungen in einer Gasstr&mung
mit Grenzachicht, Z.A.M.M. 6 Vol. 18, S, 207-222, (1938),

Crooco, L., Su di un valore massimo del coefficient di
transmissione del calore de una lemina piana a un fluido
scorrente, Rendiconti R. Acoademia deil Lincei, Vol. 1l,
fasc. L490-496, 1931.

Croceo, L., Sulla Transmissione del ocalore dea una lemina
piana un fluido scorrente ad alta velocita, L'Aerotecnioca,
Vol. 12, fase, 181-197, 1932,

Blasius, H,, Grenzschichten in Flussigkeiten mit kleiner
Reibung, Zeit. F, Math, u. Phys., Bd. 56, S. 1, 1908,

von Mises, Bemerkung zur Hydrodynamik, Z.A.M.M., Vol. 7,
s. L25, 1927,

Kent, R. H., The Role of Model Experiment in Projectile

Design, Mechanical Engineering., Vol. 5i, pages &41-6,6,
1932,

-25-



PART (II)

SUPERSONIC FLOW OVER AN INCLINED

BODY OF REVOLUTION

The serodynamic forces acting on a projectile can
be divided into three parts: the resistance or drag in the
direction of the exis of the body, the lift in the direction
perpendicular to the axis of the body, end the forces due to
the rotation of the body (Magnus effect). The first ecomponent,
the resistence, is, of course, the most important one, because
it is the predominating factor in determining the range of the
projectile. However, in the case of an actual projectile,
inclination end rotation are always present, and therefore,
accurate calculation of range is impossible without considering
the aecond and third components of aerodynemic forces, 1.e.,
the 1lift and the forces due to rotation of the body. It is
found that the solution of von Karman and Moore (Ref. 1) for
the linearized hydrodynamical equation of axial flow over a
slender body of revolution cean easily be generelized to the
cagen in which the projectile is ineclined to the flight path,
Strictly speaking, the solution is applicable only to a very
slender body inclined at a small engle to the.flight path,
because second order quentities of the disturbance due to the

‘presence of the body are neglected. However, for the case of

26



axial flow over a cone, von Karman-Moore's first approximation
(Ref. 1) differs very little from the exact solution of Taylor
end Maceoll (Ref. 2) for vortex angles up to 1;0°. Therefore,
it is expected that the first epproximation of the lift force
as obtained in this paper can be applied to a pointed
projectile with fair accuracy.

If # is the potentisl of the small disturbance v
veloeity due to the presence of a body of revolution whose
axis coineides with the x-axis, then the linearizsed equation

of motion of compressible fluids in oylindrical co-ordinates

x, r, and © is

4/945 ¢, L7,

/= 2’2'} 22 w7 ar TAF 087 T (any
In this equation, V is the velocity of the undisturbed flow
for which the veloelty of sound is ¢, If the direection of
the undisturbed flow coincides with the axis of the body,
then ff is independent of O, and Eq. (%.1) reduced to

2 2
W ). v _

2/&2 O

(L.2)

The solution of this equgblon when ths velocity

of the undisturbed flow is greater than the velooity of
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sound, is the seme as that for a two-dimensional wave diverging
from & center, It wes obtained by Levi-Civita (Ref. 3) and by

H. Lamb (Ref. L)+ Von Karman aLnd Moore (Ref. 1) epplied it to

the present case and showed that it can be expressed as a

source digtribution given by the potential

0

51/5 = / L X~ AR cahu) du (%.3)
__/_—-L /
0&4 o«

Z i
where /= /(l//c )=17 . hnalogy with a similar case of

flow of an incompressible fluid leads ons to expect the

solution of Eq. (2.1) to be a doublet distribution given by
the potential

0
é = - & COJ"A/ —7[/),/ -/l CDJA/é)caJ//é A4 (Vols)
coth A '/*/

This cen be shown to be true, because, if the solution of

Eq. (L.1) is of the form
_ / |
&= cud Flx )
then Eq. (1.l) reduces to

) LOE, I L o,
7 &vb wr 2 (%.10)
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Differentiation of Eq. (2.2) with respect to r gives
/ /- 2 2 ) ..A / =0
(1= 2)aels 65 6 ona

Comparing Eq. (.la) with Eq. (0.2e), it is easily seen that
Eq. (2sl}) is a solution of Eqs (%el)s The function £ has

to be determined by the boundary condition

s , / _ 4 / Ay o%ggﬁa/mri x/z& (2e5)
/ mé’ £ e
Jé/f

where A is the normal component of the velocity V of the
undisturbed flow, and R 1is the radius of the body.

The complete solution of flow over an inclined body
of revolution is then obtained by superimposing a cross-flow
upon an axiael flow, i.e.

¢ =
This solution was also suggested independently by C. Ferrari
(Ref. 5).

From the velocity potentiel @, one can calculate
the pressure distribution over the body end then the aero-
dynamic forces. However, since the theory is based upon the
linearized equation, the oross product terms of derivetives

of #, and @, in the pressure calculation cen be neglected.
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Therefore the following simplification results: the resistance
or drag can be caleculated from the axial flow alone and the
1ift can be separately ocomputed from the cross flow. Since
the resistance was oalculated before, (Ref,l), the following
treatment is concerned only with the lift force. The 1lift
a.oting in a direction perpendicular to the axis of the body

end the moment about the vortex are thus

7[00
/ A,é/zdﬁzm///z»m/// 280 cncd Aoy

M /r/,ﬂ/?/l/ﬂ[ﬁfﬂ,{;/ljgg’ay\//_&ézrd[w////j L.6)

where /) % is the difference between the pressure at the
surface of the body and that of the undisturbed flow and f
is the density of the fluid in the undisturbed flow.

Eq. (1.5) is a non-homogeneous linesr integral
equation in £ which does not have a general solution of
simple form., However, it is interesting to see how Eq. (%.5)
simplified in the limiting case when the radius of body
approaches zero., It is convenient here to use § = /k’-x/zm/z

as the independent varieble, thenEq. (L.5) becomes

T ey, B

/ i —‘/Z / /, - 1
B W oeg)- ek Ky A
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Integrating by parts, one has

A-aR t-of
%5 & = / [HE(x-E) 0] + ) Hoas

Now, if' the projectile is pointed nose, the doublet
strength must be zero et the nose {=C , thus f//ﬁj =0 .
Let E —»/ , end writing X instead of f in the integrand

the above eguation reduces to

b
pas / (.b.
b= 77 V/ A) X (1e5e)

0

Since the eross-sectionel aree of the body of revolution is

S = 7[/62 > Eqe (L.58) cen be written as

X
__7;_
y= /%/x};/x

or

T

X
Sty = L §

Differentiating, one arrives at

fi= 2 % @.7)



In order to calculste the lift, one has first to

find the sxial component of disturbance veleceity. Thus

4
(%) _ _pead 7/ ~ RS coeh i) coih w Au

amﬁ X

_j / Y2l g

/

2 N l-£)2 k%

o o6 ; _ L 4, Ynd 4
~ 2 %/ Fle) dy = G54 =Lt £

Substituting inte Eq. (L.6), the 1ift force is obtained as

_ W os’h 4.f
L—Zﬂ/,/ L S didx = SV 4,
There ’46 = area. of the base section of the body.

Hence the 1ift coefficient cen be evaluated as

L 7
Q‘W:Z’VLQZ% (8)
z V7%
in which W = angle of atteck of the body.

The moment srm d, 1.e., the distance between the

point of application of the resultent lift force end the

vertex can be obtained by dividing the moment computed from
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Eq. (%.6) by the lift force, and thus
&Z:= / AZ ‘/%W)} A! (ﬂu9)

where /772/ = aroa of the mean secticn of the body,
i.e., the volume of the body divided by its length, é .

The results of Eq. (%.8) and Eq. (L.9) are
identieal to those found in Munk's theory of airships (Ref. 6).
At first sight, this might be surprising. However, if the
radius of the body spproaches zero as assumed, the cross-flow
pattern is the seme as that for an infinitely long cirecular
cylinder ﬁoving with its axes perpendicular to the flow,
Therefore, in every plene perpendicular to the axis of the
body, the flow can be considered as two dimensional, i.e., it
is independent of the variable [ . Hence Eq. (.1)
reduces gimply to

2, L, L TE

)2 4 EY) N2 342 (%.1b)

This is immedietely reccognized as the equation of motion for
two dimensionael flow of incompressible fluids, which is the
basis of Munkt*s theory.

Due to this two dimensionael character of the flow,
the distribution of doublets is not affected by the chenge in

Mach's number, which is only comnected with the independent

P



variasble Y , and, therefore, the 1lift coefficient and the
moment arm are also independent of Mach's number as shown by

Eqe {L.8) and Bq. (2.9). This Aan also be seen from the fact
that when r approaches zero, the variable fﬂ,{— ol G
—_ X and thus the effect of ¢{ , which is a funetion of
Mach;s number, is removed. To study the effect of Much's
number on the lift of the body, one has to go back to Eq. (L.5).
To avoid the difficuity of solving this integral equation, the
"indirect method™ of solution can be employed, i.e., take a func-
tion f and determine the necessary shape of the body to comply
with this funetion f,

Taking the simplest case

Llt- an cahu) = K (X2 coshw)

where X = e constent, Then
¢
452 = - Aacosg / (A~ o(ﬂwfhymiu/ﬂ
-/ .
ook 75

= & Cof _—'I- _1. 2 - % -/l
A ﬂ/z )= ~ 2 ih =
And the boundary condition reduces to

_ ALt Xy fr,2 ¥
= 25 [ ) - et )
Therefore, the solution, Eq. (2.42), is evidently a solution

for a cone with helf vertex angle £ , if (0&‘6 = —ﬁ’;‘ .

By putting Jﬁﬂélé. = Z; the boundary condition can
&
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be written in the form

2
v, = 5‘-5-2-/—’;/54/42—-/ + mrf/g'] (2.5b)

For any given value of vertex angle and Mech's number, the
corresponding velue of K can be obteined from Eq. (Z.5b)
In order to ecalculete the lift, one has first to

find the axial component of disturbence welocity. Thus from

Eq. (10)4-&)

345 b/ [ X,z /o(,?/ __/
il M s e/

XA cosd,[S)

Subsfituting into Eq. (1.6), the 1ift force is found to be

[l

2%
X

= néA’//g_/gl//

= 29 Vv,

2R Ay

S

— ALK eV o e
2



where y = lateral surfeace area of the cone, Therefore

_£./2
2 V4%
But from Eq. (1.5b), é is obteined as

s
——

£ Uy
2’ ZQ/{-Z—/ + Cmf/gj

’ | .
Hence (= /f/ /;y) (2.10)

fo= L4 S
SICE ) + ot S

whers

In the limiting case when € epproached gero,
K — 2
which agrees with Eq. (%2.8). Similarly from Eq. (1.6) the

moment coefficient is

C - moment about vertex 2
% =ZAY
,22’_ )2 45 / F (2.11)

which satisfies Eq. (1.9).
Both Eq. (2.8) end Eq. (2.10) show that the lift at & given

Mech's number is proportionsl to the angle of attack of the
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body. This is & general cheracterigtic of flow around e body
without separation., If the fluid separates from the body and
creates a "dead water" region on lee side of the body, then
the 1ift will be proportiocnal to the square of the angle of
sttack as was shown by W. Bolley (Ref, 7). The problem
whetimr the fluid separates or not cean only be answered by
experiments. From the experimental data now aveilable, (Ref.
8), it seems that the flow is continupus without separation,
and, therefore, the 1lift is proportional to the sngle of attack
of the body.

Fig. 22 is the result of computation using Eq.
(1.10)s Calculetions were carried out for values of /L: =7
becense the value of /C, =/ corresponds to 6—‘-‘/5 .
where ﬂ is the wave angle, For /ﬁ/ < 7 it is found
that /3 < € « Thies meens that the wave angle is smeller
than the vertex angle which is, of course, impossible, There- |
fore, /f//, =/ merks the limit of validity of this solution,
In fect, even when /i:/ is near to 1, the solui;,ion must be
considered es qualtitave only, since in this region the effect
of the surfece of the body on the shock wave cennot be
neglected.,

To generalize the solution for a body of revolution
with a sharp point at the origin and cylindricael shape at
infinity, it is simplest to use a step-wise doublet distribu-

tion. Consider the points P’/ 73 ----- , /2 /?V of the
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meridisn line of the body, and designate their co-ordinates by
7{// E, ; lg/ /ez; Tty );, /en ;T l;,} /€N end the correspond-
ing values of ) - &/ by f/'/ fzj £, fﬂ

’

Then the boundery condition of Eq. (%.5) can be written as

2 X, - g /K- &
v =-Z 77/1/,//01M R YA S
’ ;—:7/ ‘ A/’/LZ%, 44/671,/

; (2.5¢0)
i b 5, ,t;- 5.2 /
/ Oé/efwy/x/en)—7/

This condition actually gives e set of /V equations to determine

xRy

the A/ constents /lf‘ « This set of equations cen be
solved rather easily because each following equation in the set
only contains one more which does not appeer in the preceding
one of the set. When /‘L; 5 are determined, the lift can be
calculated by using Eq. (2.6). The pressure over each section
of the conical surface is constent., The lift end moment co-

efficients are thus obtained as

ZWZ /ﬁﬂ [w) //gm‘/ 7’/{’,,2/27/{/4//4 ;7 / )—/

¢, - L Z’/ 2, (1, 1// // » U//e,,,‘,ff )

/ 7 //
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where /) is the last point on the meridien line, /7, is
the base redius and / is length of the body.

fig. L3 is tha.resﬁlt of the caleulation using Eq,.
(2.12) for a body of revolution with "6-cliber head" and
totel length of 4.8 calibers, when it is travelling with a
veloeity 2,60 times that of sound ( A = 2,5). The lift
coefficient is considerably higher than that of a cone at the
same angle of attack and et the seme Mach's number, evidently
due to the cylindrical purt of the body. The position of the
resulting 1lift force is also shown in the figure, Since, as
mentioned before, lift and drag are independent in first order
spproximation, the calculated 1lift coefficient can be combined
with the drag coefficient teken from experiments end thus give
some informetion on the magnitude eand direetion of the result-
ing forece, Fig. 2.l shows the method epplied to this projectile
with the drag coefficient taken from Kent'!'s experiment (Ref. 9).

If the projectile has a length of L.3l; dismeters in-
stead of L.8 diemeters and has the seme nose shape, and, if its
center of gravity is located at a point 2,68 dismeters back of
the nose, then the calculated moment about the center of
gravity cen be expressed as M = _57 VZ/(/V 3% 74’/71{
where //—2[‘/‘} = ¢35 for —ZZ = 269 .
This comperes closely with the value 1%7%%€} = /07

extrapoleted from R, H, Fowler's experiment (Ref. 8), for a
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projectile of the same proportions. This shows that the theory

developed in this paper cen be applied to & projectile with

fair eccuracy.
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PART (11I)

APPLICATION OF TECHAPLIGIN'S TRANSFORMATION TO

TWO DIMENSIONAL SUBSONIC FLOW

The equetions of two dimensional irrotational
motion of compressible flulds, assuming that the pressure
is a single-valved function of density only, can be reduced
to a single non-lineer equation of the veloocity potential.
In the supersonic case, the problem is solved by Prendsl,
Meyer and Busemann by means of the powerful method of
cheracteristics. The essential difficulty of this problem
lies in the subsonic case especially when the velocity is
near to the veloclty of sound., The first logicel step is to
linearize the equation based on the argument that the disturb-
ance super-imposed on the parellel rectilinear flow due to the
presence of a solid body is sufficiently smsll compared with
parellel flow, This makes the second end higher order terms
of disturbence potential to be negligible, An exemple of
this method is the well-kmown theory of thin airfoil due to
Preandtl and Glauert, But the presence of stagnation point at
the nose of the airfoil makes the applicetion of the linearized
theory questionsble, at least neer this region; hecause there
the disturbence due to the presence of the body is no longer

smaell. On the same ground, the theory breaks down in cese of
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bodies whose dimension ecross the streem is not small compared
with the dimension parellel to the streem. The next method is
thet derived originelly by Janzén and Lord Reyleigh, They

solved the eoquation by succeazsive approzimations. However,

the process is very tedious and the method convergent very slowly
if tﬁe velocity approaches that of sound,

Molenbroeck (Ref. 1) and Tachapligin (Ref. 2)
suggested the use of‘the magnitude of velocity and inclination
of velocity to the x-exis as independent variables end were
able thus to reduce the equaetion of veloeity potential to a
linear equation. This equation was solved by Tschapligin (Ref.
2) and recently put in a more convenient form by F. Cleauser end
M. Clauser (Ref., 3). The solution is essentially a series
each term of which is a product of hypergeometrie function and
circular funotion. The chief difficulty in practical applicetion
of this solution is to obtain a proper set of boundafy conditiohs
in the transformed plane, or the hodograph plene.

Tschepligin (Ref. 2) showed that a great simplificee
tion of the ewuation in hodogreph plane results if the ratio of
specific heats of the gas is equal to ~l. Then the equation
becomes the equation of minimel surface whose sclution is well-
Inown. However, at first, the hypothetiecal walue of ratio of
specific heats (21l real gas has the value for this ratio

renging from 1,00 to 2,00) makes the practical application of
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Tsohepligin's theory questionable., It was Demtschenko (Ref. L)
snd Busemann (Ref. 5) who made the meaning of this special value
;:f ratio clear, They found that this special value of ratio of
specific heats really corresponds to take the tengent of ﬁ—Zf
curve of gas instead f)- /s curve itself, However, they
limit themselves to use the tangent at the state of rest of the
gas. Thus their theory can only apply to velocities up to 0.5
times sound veleotiy., In this part , the theory is generalized
to use the tengent at the stats of gas corresponding to the
undisturbed parallel flow, Therefore the range of usefulness
of the theory is greatly extended, In the first section, the
general theory will be developed. In the second ssction, the
theory will be applied to the case of symmetrical Joukowsky
airfoil at zero angle of attack,

Section (I)

It /9 is the pressure e.n.df/'yj is the density of
gas, the adiabatic process is expressed as a curve in the ﬁ'lf
plane as shown in Fig. 3.1. Now conditions near to the point

ﬁ,, v, can be approximated by the tangent at this
point. The equation of the tangent at this point ocan be

written as

p-p = Clv-v)= C’/ﬁi-/- ) G

where S—‘“ is the density of the gas. Now the slope C
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must be equal to the slope of the curve at the point /7,’U;
- () (5 - ()

' a
Therefore C' = - 4,2§’/
Hence the spproximete ﬁ— 5 relation near %, , 5’,

can be written as
2,2 / { /
b-p=as (L~ 5) (3.2)
From the generalized Befnoulli’s theorem, the
following relation is obtained

7
L 2/ z_/_f_fz
2 % 245 =) 7 (3:3)°

where {1 is the velocity of gas, the subscripts 2, 3
indicate two conditions. But from Eq. (3.2), ﬁ can be

expressed as a function of 5" , thus

2
dp= 4 57 y (3.4)
7~ 45
s
Substituting into the integrand in Eq., (3.3) and integrate,

the following relation is obtained

L 2 2 2 2/ L _ _ /.
e X o= f/
]

end 5;:-5 » then

Now if 'W';:O}/(/VZ‘::W 5}-_—



§2 (% ' (3.5)

where the subsctipt (0 denotes the rest state of the gas,
If the sound velocity 4 1is defined as the derivative of

/é ‘with respect to €, then Eq. (3.4) gives

_d_é §2= a‘f‘—: 4/252_—. constant

Therefore Eq. (3.5) can be written as

$ |2 w'’
()= /= %7

§ 2
e = [/~ & (3.7)

2 z 2z
Furthermore, from Eq. (3.6), § d,z = S5, 4

or

thus Eq. (3.7) can alsc be written as

g —
=22 _ o (3.8)
s =,

It is interesting at this stage, ta notice that
from Eq. (3.8), the density decreeses as velocity «v~
inoreases, es it is expected. Thus from Eq. (3.7), the

. veloolity of sound of the gas will increase as the velocity is

Ly



increassed. This is just opposite to real gas, because in the
case of an adiabatic flow, it is well-known that the temperature
of gas decreases as the wvelocity of gas is increased and thus
the sound veloeity also deoreases. However from Egq. (3.7), the
ratio % or Mach's number increases as the velocity «~
increases. But this ratlo only reaches the value unity when

w" = oo » or from Eq. (3.8) when ¢ =0 . It is
thus seen that the entire region of flow is subsonic and thus
the equetion of motion is always of elliptie type. This may be
considered as the physical reason why the complex representation
of velocity potential and stream funotion is possible in all
cases, as will be shown in following pages. However one should
bear in mind that the portion of tangent that could be used as
en approximation to the true adisbatic curve, must lie within
the first quadrant, Thus the upper limit of wvelocity for

practical application of the theory is when % =0 « By

using Eqs. (3.2), (3.7) end (3.8), this upper limit is found to

be
My oL ,é
/'W’-)mr. (—4] / Hj //" retd
Or by putting g,z = / —é- » 1;he above equation

reduces to



(Z‘fa_/c/?w. - -[—_g/i—)_— ‘//*//f// _/Z@y

2 -
The values of fzérzﬁﬁtf for different values of f%@

/

are shown in Table 3,1,

Table 3,1
% _‘7“;-« max. ( ‘%)mr.
0 - 2.186
0.2 10,91 2.195
0.4 5456 2.225
0.6 3.78 2.265
0,8 2.92 2.335
1.0 2.405 ‘ 2.1405

It is thus seen that for most applicsetions of this
theory, % will remain positive. However due to large

deviation from the true adiabatic process at high values of
W

W . “w-
W , one has probably to limit the ratio (j;;;/ to
about 2,
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Now if the flow is irrotational, there exists a
volooity potentisl ¢  such that

,Zé-_-;% ﬁ-—?f

Y , Y (3.9)

where /4,6 U ere the ¥ \7 components of the
velocity W . To satisfy the equation of continuity, the

stream function ’W is introduced., It is defined by

Su=3%2 &, _ 3%
R VI A A 57 3:30)

Now if the angle of inclinetion of the welocity 4+t~ +to the

x-axis is /5 , then from Egs. (3.9) end (3.10), one has

A¢ = w cos B dx + wr sing Ay

‘ (3.11)
AV = —W?S- J’/'ﬁ/ﬂfl %W:@g cos 4 {7
Solving for 4/) end d/ﬂ s
_ (0sf _ Inf 5
/}f - s ﬂ/¢ w f ﬂ/# (3.12)

5/ - J‘/ﬂé d CDJ'é L7 47/0
7 W ¢+ w §
S0 long as the correspondence between the physical plans and
the hodoplane is one to one, or mathometically %’—;fé}i #0
/
one can express X , y as functions of v / end so

8lso ¢ and Z// as functions £ end ﬁ e Thus
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db =4/ dw+ &5 4p
A=Y, du + 7%’ s (5.13)

where primes indicate the derivative, and subscript indicate
the variables with respect to which the functions are
differentiated. Now substitute Eq. (3.13) into Eq. (3.12),

the following relations are obtained

4 g / / /__ Ry ,
dx= (G b, GEEV Gy T EY N

(3.14)
/80 / (7P Sr7 / 2l
=Gy SEZY s (G )y

Since the left-hand sidesof Eq. (3.ll) are exact differentisal,

one can apply the reciprocity relation and obtains

B HR ()

n
(3 15)
2 Jing 4/ 0SB Soqfiy _ 2/ Sin B 47, cosf §
ap(w¢w+ 5’%) o T‘fég/sﬂ+_ﬁé’?i7@)
Carrying out the differentiation, and cencelling identieal

terms in left-hand and right-hand side,

_InB 4 _ CSB Sa  _(Nf L B S W
7244% A ;gﬁ*;g?’/’ 4’(”?6
3+16)

(0
w WJ%W/ g/ -ﬂfﬁ%/"—‘)V
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Using Eq. (3.7), Eq. (3.16) becomes
oo I cxp S '=‘m\r LIS
w gé‘/ -M—(é 3 Vir ’ ;é Y

M _ J’,/y fﬂ %/;— ”W%l' 208 ’f_%’(Bcl'n

w 5“ i

/ / / /
As in both eguation. ¢ Zk , and ¢ Z/ﬂ
w J w ’

/5

are connected with a proportional factor, one can solve for

them, and

N 2 ,
W S’W,}ﬁ;’

0

(3.18)

/ fﬂ /
I

Now Eq. (3.18) can be further reduced if & new

variable (& is introduced, W is defined as

€ w- (3.19)

Then Eq. (3.18) becomes
4 = -V
0= T

/ ’ (3.20)
/A

0



This is the fundamental set of eqﬁations for the present theory,
It can be easily recognized as the Caushy-Riemenn differential
equation, end thus sé + L'l/o must be an analytic
funetion of /ﬂ + LV « However for the convenience
of numericel calculation, a new variable M/ is used instead

of & , such that

a
W = 40 . c (3.218.)
Or by integrating Eq. (3.19),
20,0

W=

(3.21)
4/@2—;‘”2 7 4,

Hence by inverting,

421452 ;@f (3.22)
faf-W° |

W-_-:

Thus by substituting into Eq. (3.8),

SN s (3.23)
S z 2 )
bai- W

If another set of new variables U = W CM/H

and l/= WJ/?) /45’ are used as independent variables, one

has
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= Y WAy
20 20 3lf + 20 ) ’ij/‘gf(f“’}@—jé "

_,a__
3V //V/ Jm/@tv‘mr/w/

Using Eq. (3.2,), Eq. (3.20) cen be written as

- X/ 7
Cﬁ\f/ﬂ &U + J‘//]/ﬂ__—— = J//7/5 aU - Cﬂ\f/é,%
e hl / ¢ = 3¢i' /7

Those eguations ere satisfied by

2 b W
T Ay) W) U (3.25)

These are the Cauehy-Riemenn differential equations, therefore

the complex potential }— = ¢ + Z.W is a function
of U - ¢ [/ l/]/ | e Or.
¢¢/7/0 FU-v)= AW)

Hence - z” _ F/[/*l'[/j: /_—/M/j (3.26)



To transform from hodograph plesne back to physical
plane, the expression of Y snd 4 in terms of {/ end
V must be found. By using Egs. (3.22) end (3.23), Eq. (3.12)

can be written as

. w? V/W
x=1fli¢ / /4 44

4 2 2
where W = U + }/ . These equations cen be combined

into one equation by meens of Eq. (3.26). Thus

A? = /,},’v‘/'/j: —Z—E— - M
w 0
For practiesl applieation of the theory to the flaw'
over an obstacle, the computation proceeds as follows: (1)
Find the complex potential for the flow of incompressible

fluid over the obstacle, say
w GlE+iq) =~ w GE)

where M/, , is the velocity of parallel rectilinear undisturbed

flow, and » /] the spece coordinate of the physical plane.
P y

(2) Now let /[—’- }/I/,"é‘[{;) « Here M is the

~5l}-



transformed undisturbed velocity, to be interpreted as Eq.
(3.21). But the complex variable &  has no direct
physical meaniﬁg. (3) Using the above value of /: s Eq.

(3.27) cen be written es

iz = /§~7§/{;@/ )/5
Integrating,

2= 6" 4(%&/(/] 4 (3.28)

Thus it is seen that the complex coordinate in the physical
plane of compressible fluid is equal to the corresponding
complex coordinate in the physical plane of incompressible
fluid plus a correction term., The factor before the integral

depends upon the Mach's number of the undisturbed flow only.

By using Eqs. (3.7) and (3.8), and (3.21), one has

__f/_fiz

Zz(‘%@ - //"4///(:7 (3.29)

The integration constant of the integral in Eq.

(3.28) is not importaent, because it only means a translation
of the whole 2 — plene. (L) The veloeity g

corresponds to 2Z can be computed by starting with
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_ AdF _ - .
F=JE-mwaf-v

By memns of Eq. (3.29)

7
W W
w; __z_ // 7 / 4/ﬂf/) /
Thus by putting M = 4V , one obtains

W /

W,y
Thus ’ZWK/ (3.30)
wo_ LWy . ~
o A T2

Using Eqs. (3.30 and (3.29), the ratio % can be

calculated easily. (5) To determine the pressure acting on

the surface of the body one has to use Eq, (3.2)., With some
manipulation, the following relation is obtained:
b2, 88/
L S %

P A

A

5,
= 2 L /—{ﬂ) z 7
(—-*/ 2
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But

S - | 1+

= w12 _._WI- Z .
J+ (22 G (3.31
/ /,{__4_'4)
Therefore

(3.32)

p 4, 2 Z/ 4/[' w2, ) 2

= 1 -1 | +165)=1477)

ZLS”CZ [__2_/4& /ﬁ‘_‘f/_ /4/

Section (II)
In this section, the general theory developed in
Section (I) is applied to the simple case of flow over a sym-
metrical Joukowsky eirfoil at zero angle of atteck. The

complex potential in the ocircle-plane (see Fig, 3.2) is known

to be
w-b)+ 2
o ety .
A T / (3.33)
whére A = radius of the airfoil circle, jz

eccentriocity of the airfoil circle, The relation between the
ai rfoil plane and cirele-plane is the well-known Joukowsky

transformation __Z__
Sy
(3.34)



if the radius of the trensforming circle is unity.

Now the starting point of the calculation is the

function to find Y 4F

. dE)?
4. (5
WAE = U G T Y
7
Therefore W’d/i Wj//‘r_z? // Z-7 /4.(/)/

Thus the correction term in Eq. (3.28) is
/ .
Z;}/W%Ff%{%z///%*%/ (3.35)
where =
J /// [/g—j}z M-U#///

a* b/
"2 /// //Vé)z (i) J Chi=1)

z:,// S22, 2t )
=2 e

These integrals cen be easily computed snd simplified, noting
thet a-5 =/ . If M’é}:g‘g‘ﬂ and
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-—4/5 +2e°0- e’_j""’/

-44 2.6 -
L 4 £GP d 4 0 tteelf

]

= [0 APy () 1404 Ly 22
44 4y 2./-1-2 & - j,z* ewﬂj/ (3.36)
Separeting the real and imsginary parts, and adding,
b0 (1+0-4)=a/3 eord -+ cos 34)
214
+ 5 by (10 fp L 4 (172 s

*f//—/t?’) cor 24 + Jl//f/l)cmjﬂ/
(3.37)

Im [1+41-4)= a/-snd+F 0 38)
+Z’/ /[/742/2'/;*) yind - 1//»/17&7 24
‘l [/7‘/1)5//7 34 - // /Zj é,, /(Ai;i %/-/l/ﬂ/

These give the correction term to X and y
coordinates.

The transformed velocity W over the surface of
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the airfoil can be easily found by means of graphicel method
(Ref. 6). Then the actusl velocity and pressure can be computed
by using Eqs. (3.22) and (3.32);
Fig. 3.3 shows the result of celculation for the case

4 = 1,20 and -%f =  0.550. The nose of the
sirfoil is somewhat rounded by transforming into the case of
compressible fluid., However, the pressure gradient is steeper,
as would be expected. The main defect of this type of ocal-
culation is that during the transformeation from ineompressible
flow to compressible flow, the shape of the body is also
changed. To isolate the effect of compressibility of the
fluid, it is necessary to bring back the original shape of the
body. This is done by first deforming the original Joukowsky
eirfoil, such thet the final profile after correction for
compressibility is seme as the original Joukowsky airfoil.
The amount of deformation is obtained from the calculation
assuming that the airfoil was a Joukowsky sirfoil at start.
That is the effect of deformation on the correction term of
Bq. (3.28) is neglected. This is allowable because the
quantity neglected is a second order quantity,

This deformation of Joukowsky airfoil can be

carried out by using the method developed by von Kerman aund
Trefftz (Ref. 7). However, for some practical reasons, the

Karman-Trefftz method is somewhat modified:

-&-



Fig. 3.4a shows two eirfoils, béth having the same
chord, one is Joukowsky airfoil desired and the other is the
airfoil resulted from the first .step caleulations Now apply
the Joukowsky transformation to this figure, then the Joukowsky
airfoil will become e circle (j while the other airfoil
a near-circular shape[: a3shown in Fig. 3.4b., The desired
deformed Joukowsky airfoil will appear like C 2 in this

figure. The difference between (,2 and (

/

is just
opposite and equal to that between ¢ and C + Now let

!

[’Z be written as G, =/ g‘:‘ﬁ + Obviously,
2= /7 %/’ﬂ) (3.38)

where g/ﬂ) wil be small compared with 1., The function
which established the conformel transformetion of the outside

of this boundary Oz into outside of the circle C, mey be

dénoted by

Z, =&, [1+AG)] (3.39)
where g’, J C 2 have their origin at the center
and the absolute value of 7[/ g;, ) is again small

compared with 1, Then it is shown (Ref. 7) that

98)+ fe [H6)] =0 (3.10)

In order to calculate 7£/ g’ 2 J we develop the
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function f/ 8 ) in a Fourier series:

L=
7= Z/ o 08 7 (3.40)

Here only consine terms appear because the airfoil is

symmetrical about the chord, One the other hand, the complex

funetion 7"[ g,_) hes the form, for / S2 / >/
= ¢
7 ] 7
0 2
Now put Cz ~ cé“g , then (3.40) is satisfied by
| Cn = — 4y,
Thus
He) = = 7 ?f» (3.43)
2 4

It can be easily seen that the veloecity eround the deformed

Joukowsky eirfoil can be ealculated as

w= o fo/

2Z; (34l4)

whers Mﬁ- =  velocity around the Joukowsky airfoil,

Now from Egs. (3.39 amd (3.43),

b2



e o g
w T Tt I
o 0 2

= 1+ 2] tn-aycons] - ; Ztr1g9008

Neglecting small quemtities of second order, end noting Eq.
(3.141),

/7;{’;%/ =/ Z/%-/)dﬂ cos N8

o0 °°/
= )4 T may cos nd -2 Ay M4 (3.5)
1) o

o0

= /4 Z%—Zdnﬂﬂ ng - ;/éy

A trial csalculation shows that the convergence of
the coefficients Ay  is not very good. Therefore, one

mast avoid menipulation on the Fourier series as required by
oQ

Eq. (3.45). This is possible because — 2 f Ay Sin 74
: P)

is known to mathematicians as the allied or conjugate series

of Zo? Ay, Cos MY - . It is also known
0
(Ref. 8) that if //é') = 2,7 Ay Co8 78
o
A
=6
: L[ JrE)- 85
— Z:@J’mwﬂ-———-—/ /
/ 4 % 4 flﬂ—éf- j
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Therefore

A

2;‘%—24@&/}1725 —1-/?

/

(81£) 400 £/,
o _Zi

Integrating by parts,

/ [#479 +//4—g/ / ey

2
Z‘/m—zz 8Y77/ 5

- L / YL yore)- ynft {5 /w/
(/= es¥)

Hence Eq. (3.45) can be written as

/lg, / . / S ore)-p {2 ////

4
/,- (A’,,E’ / }(3 )4-6) .

The integral is evidently convergent for any continuocus regular

function j/ﬂ ) s because then the integrend is always

finite, Its evaluation cen be done numerically.
Fig. 345 is the result of calculation for =

Joukowsky airfoil with the thickness paremeter A =420 »

v,

at two speeds, - = 0,450 end 0,550, The suction
(4

peeks are considerably higher with higher spesds. Also the

6l



positions of pressure peaks tend to move bsckward with increas-
ing speed. Both are in agreémsnt with the experimental results

obtained by J. Stack ( Ref. 9). The values of ( ﬁ-/&)éf e’

' for % =  0.550 and —24’5 = 0.450 at which
¥ !

real air will attain a velocity equal to the local sound velocity
are equal to =1.65% and -2.755 respectively, It is thus seen
that the effect of compressibility on pressure distribution is
appreciable, even when nowhere the local soﬁnd velocity is
reached. Omne should, however, bear in mind that the effect on
the force coefficient of the alrfoil will probably not be so
marked as with the pressure distribution, because the resultant
force on the airfoil is the algebraic difference of pressure

force aoting on two sides of the section,



APPENDIX TO PART (III)

COMPARISON WITH OTHER METHODS

In order to check the accuracy of the method
developed in PART (III), the flow over a finite cirecular
cylinder with its axis perpendicular to the direction of
undisturbed flow is studied. The method exposed in Section
(11) of PART (III) for correction of shape of body is used.
The following is the result of calculation for velocity at the
top of the eircular section, compared with results by other

methods [collected by E, Pistolesi (Ref. 10)].

2
1 = Q.u00
73 Lo
Method _ﬁﬂ; at top of section
W, P
Part (III) 2,268
Rayleigh 2.206
Poggi 2.194
Taylor's
Electric 2,168
Analogy

i%? = 2,000 for incompressible fluid,

Thus the present method gives e higher velue. However, the
flow over a cylinder is rather an extreme case. Because the

difference between the velocities to be calculated and the
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and the undisturbed velocity is large, and thus this

approximate method involves larger than usual error.
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‘PART (IV)

FLIGHT ANALYSIS OF A SOUNDING ROCKET WITH SPECIAL

REFERENCE TO PROPULSION BY SUCCESSIVE IMPULOSES

Introdution

In 1919 R. H. Goddard (Ref. 1) published the
historically importent paper which suggested the use of nitro-
cellulose péwﬁer as & propellant for raising e sounding
rocket to altitudes beyond the range of sounding balloons. To
determine the feasibility of this propellent, a series of ex-
periments had been carried out and it,was found that thermsal
efficiency of 50% could be expected if the powder was exploded
in & properly designed chember and the resulting gases were
allowed to escape at high velocity through an expanding nozzle.
In 1931 R. Tilling used & mixture of potassium chlorate and
naphthalene as propellant and actually reached an altitude of
6,600 feet., More recently, L. Damblenc (Re. 2) made static
tests with a slow burning black powder end from these
estimated that a height of 10,060 feet could be reached using
8 two-step arrangement, The resﬁlts so far reported offer an
inecentive to further aenalysis,

The effect of decreasing gravitational acceleration
on the meximum height reeched by a rocket has been considered

by A. Bartocei ( Ref, 3). However, he assumes that the
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rocket itself has a constant acceleration during powered
flight, L. Breguet and R. Dévi_llers ( Ref, L) also con-
sidered the effect of the variation of g, To simplify the
‘enalysis, they assumed that the acceleration of the rocket was
equal to & constent multiple of g Since the sounding rocket
for practical reasons will be propelled by a nearly constent
thrust or a uniform rate of successive impulses, in Section
(II) the euthor has studied the problem snew according to

this mode of propulsion.

When the sounding rocket is ascending through the
eir the meximum height reached is less than that reached for
flight in vacuo. Recently, studies have been made of the
problem by W. Ley end H, Schaefer (Ref. 5) and by F. J.
Meline end A. M., O, Smith (Ref., 6). On the basis of the
latter study a group of new performeance paremeters have been
is_olatad from the genersl performence equation, end these are
discussed in Section (III),

Notation

Referring to Fig, (4.1), the following notation has

been used throughout the psaper:

W = weight of propellsnt and propellent conteiner ejected
per impulse, lbs,

k ws ratio of container weight to sum of conteiner and
propellent weight ejected per impulse,

A= (1-4)

W o initial weight of rocket, 1bs,.
0
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M = initial mass of the rocket, slugs.

M/;’c
G“'

&
\

instentaneous weight of rocket, lbs.

ratio of initial weight of propellents to initial total
weight of a rocket propelled by constant thrust,

ratio of initial weight of propellents to initial total
weight of a rocket propelled by successive impulses.

z, /A

number of impulses per second.

total number of impulses occuring during powered flight,
time, sec,

intervel between impulses, sece

initiel acceleration imparted to rockst, ft/ secz.

acceleration of gravity at the starting point of flight,
ﬁ:/ gsec<,

acceleration o£ gravity above the starting point of
flight, ft/sec®, |

effective exhaust velocity of ejected propellent, ft/sec.
instenteneous velocity, f't/sec.

velceity imparted to rocket b3'r the /Lﬁ impulse,
ft/sec.

velocity at the end of the /2# interval, f£t/sec,

velocity of sound corresponding to the atmospheric con-
ditions at the starting point of the flight, ft/sec.

velocity of sound corresponding to the stmospheric con-
ditions at the height reached by the rocket at the time
t, f£t/sec.

Mecht!s number V‘/‘VS'

velacity of rocket at start of ecaasting flight, ft/sec.

-71-



Vo

X
0

o

éﬁ

[l

=
0

SRS
1

=
!

0

it

=

velocity of racket at start of coasting flight if g is
constant and equal to g , ft/sec.

altitude above sea level, feet,

height resched at the beginning of the /7
intervel, feet.,

height reached at the end of the AZ% intervel, feet,
height traveled during powered flight, feet,

height trevelled during powered flight, if g is constant
and equel to g,, feet.

height travelled during coesting flight, feet,

height travelled during coasting flight, if g is
constant and eqal to g,, feet,

height travelled during powered flight end coesting
flight, feet,

height travelled during powered flight and coasting
flight, if g is constant and egual to g, feets

redius of earth, 2,088 x 108, feet,
drag on rocket due to air resistance, 1lbs,
drag coefficient of rocket shell,

drag ocoefficient of roocket shell at the velocity of sound,

drag-weight fector (discussed in the section on the effect
of 2ir resistance),

mass density of air at the starting point of the flight,
slugs per cu. ft,

ratio of air densities at altitude and at the starting
point of the flight,

absolute temperature of the atmosphere at the height
reached by the rocket at the time T, °F.

absolute temperature of atmosphere at the starting point
of flight, ©F,
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/4 = largest cross-sectionel area of rocket shell, sg.ft.
a’ = largest diemeter of rbcket shell, ft,
]/ = length of rocket shell, ft.

.Section (1)

An spproximete method of celeuleting the maximum
height reaéhed by a rocket propelled by powder was developed
by R. H, Goddard (Ref. 1), To simplify the analysis a contin-
uous loss of mass was assumed end the problem wes so stated
thet e minimum mass of propellant necessery to 1lift one pound
of mass at the end of the flight to any desired height was
determined. However, if highepowered powder is used, the rate
of burning is so repid that the propulsive action is insfanten-
eous. The rocket is thus acted upon by ar impulse rather than
by & constemt thrust,

In the following analysis, it has, therefore, been
assumed that the propulsive force is an impulsive force, i.e.;
the force acts for such & brief intervel of time that the
rocket does not ohange its position during the applicetion of
the force, although its velocity and its momentum receive a
finite change., If the combustion process of the propulsive
unit tekes plece st sonstant volume this assumption is
Justified. Further, a study of interior ballistice of small
arms reveals that the period between the ignition of the

powder charge and the bullet's arrival at the end of & two-
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foot barrel is of the order of 1l ten-thousandths of & second.
If the gases are not res,traihed and their travel through the
burning chember end the nozzle is of much shorter length, as
"is the case for the rocket motor, even shorter periods of
duretion of action can be expected,

Assuming that the propulsive force acts as an im-
pulse, then the motion of the rocket can be calculated by
Newton's third law, which stetes that impulses between two
bodies are equal and opposite, Hence, equating the momentum
of the exhaust gases to the momentum imparted to the rocket,
using the quantities defined in the list of notetion and
referring to Fig. L.1, the following relation cen be written

for flight in wveeuo

A . _ W
77 AY, (Le2)
where A= [~k and V% = Vlé—-/l/t{/' (L.2)

oo AW - MAC E/%_C/ / / (Li.3)
L W, —nuw Y /—/17%_'_

&
NN

|

3

>

|
|y

During the intervel between impulses, AL s

the velocity is reduced by the action of gravity so that at

the end of the /27  intervel, the velocity of the
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rocket will be

/ /
= Y-8t =Y, 4 By, - g4t (beLo
Therefore
=1
/
U = 2Y - g, Al (4e5)
J=/
Substituting for A4 7/:y from Eq. (Loly)
= S she 7L
= - n9 At
5= /- 5/ 2) ’ (L.6)
o Zlac __
Or ‘HE = "757_' ,:2 A
AS’ $=A /
where = zfi
L= G

The height gained during each interval will be
represented by the area under the velocity curve in the

interval, or

(L.7)



Therefore, at the end of the Nth interval which is

the end of the powered flight, the height will be

A=N
= 7'y’ N Z
/40 = v, AZL -+ 5 fo /Afj
2=/
Substituting for /I);l:/ ite value in Eq. (L.6)

Af/ ! ~ y ‘ﬂZAi/*Z g (4]
L S )

/\/-/'/ 2 ‘\7[4372[@ ,l/
/ /z, / —

- é‘/fy; (s4)? (Le8)

where Z" A/+/ 2

The maximum height reached will be the sum of the
height et the end of powered flight emnd the height travelled

during coasting or

2
7

To calculete the meximum height one has first to

eveluate the sums S, and 82. Not’ing thet
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_~__/____=/ X /—J(%}//a,l

j-s(5)

Sy cen be written in the form

Putting Y = /Vf the shove integrel becomes

- £ / 2 ‘;Wj
- -g% { V(- w/»(—g%-wj

(4.10)

whore Y'(2)= % / log [12) j , the so-called psi-

function (Ref. 7,8).

Similaerly, S, cen be summed as

5;'““ 2’/\7/[,;/-[%,-(/\/7‘4[7”/3/}7//"7”%" j (Lo11)
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Substituting Eqs. (14,10 snd (4+11) into Eqs. (L4.6) and (L4.8),

end then into Eq. (L4.9) finaliy

/nzwo % 4 / [ﬁ )Y /Vf/ (L.12)
where 2' ]éb 1/0 ;éVZAL"/YQ

|

For convenience of calculation in Fig. 4.2 the

quantity y) is plotted ageinst N for different values

=]
L]
)
~
.

It cean easily be shown that when N = 1
so that Eq. (L.12) reduces to

mx - / : (Le128)

Mlso, as N —= o9 /W‘—? - /Zoj//’éll) thus Eq. (L.12)

reduces to
é’—f/vj// )
Lo (r- {) +
/MX /[ j ‘/ \% 7‘_/ (Ll--]-?b)
4{/
where 4, = v -4 = ”%C -4 (4+120)
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The quantity do. can be considered as the initial
acceleration of the rocket if N — o0 « It is
‘interesting to notice that Eq. (L.12b) is the equation ob~-
teined by Maline and Smith (Ref, 6) for ecalculating the
meximum height of a constant thrust rocket, as expected.

Fige. lie3 shows the veriation of ’é//mx,\z/ilcz
with  pAc/q,  for different valves of &~
and for four velves of N. These curves show that when the
total nmumber of impulses, N, becomes larger than 100, the
maximum height reached is imperceptibly chenged by increasing
the number,

At this point it is necessary to discuss the
similarity existing between a rocket propelled by successive
impulses and & rocket propelled by constant thrust., The
former loses not only the mass of the propellant, but also the
containers for the individual charges, The difference in |
effect on the rocket between the propellent and its containers
is that the propellant hes an effective exhaust velocity, c,
while the ejected conteiners leave the rocket without apprec-
isble velocity. The propulsive action, however, will remain
the seme if the whole captridge, thet is, the propellent |
charge end its container, is considered wholly as propellent

but leaving the motor at a reduced effective exhaust veloeity

/ld « The rocket propelled by constant thrust loses
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only the mass equal to the propellent carried, therefore, it
can be said to be equivelent to the "successive impulszes"
rocket if its effective exhaust velocity and its total mass of
propellant sre equel respectively to the reduced exhaust
velocity and to the sum of the masses of all the conteiners of
the "successive impulses™ rocket, In other words, ¢ is equal
to AC ed £ isequwlto g7 .

In Teble L.l the heights for four ceses have been
calculated fo illustrate the effect of the exhuast gas wvelocity .
and the totel number of impulses given to & rocket whose
weight ratio, & s 0,70, It will be noticed that for
flight in vecuo & greater height will be reachod if a amaller
number of impulses is employed. The lower portion of the
Table shows the maximum height reached by an equivelent "constant
thrust" rocket for the seme four ceases with the initial
acceleration given by Eq. (L4.12¢). The close agreement between ;
the maximum height reached by use of successive impulses, when
the totel number of impulses exoeeds 100, and that resched by
the use of constant thrust simplifies the solutien of the
problem of decressing acceleration of gravity with height, and
enables prediotion for flight with air resistance to be based
on the results obtained for a rocket propelled by constant
thrust (c.f. Ref. 6). These problems are considered in the
following sections.

Section (1I)
It is well-known that the acceleration of gravity

decreases with the height above the earthts surfece according



TABLE 4.1

. Successwe impulses

i, = G0 A 12 )N

0‘ V

Case Ft./sec. z ’ ¥ Impglses Tnax,
/i C 1 per sec. Feet
1 10,000 0.70 326 3 1,472,000
2 10,000 0.7C 10 0.092 1,686,000
3 7,000 0.7C 326 3 560,000
4 7,000 0.7¢C . 10 0.092 676,000

Constant Thrust

m,g = /’L[/df[/ 5)‘/ + _\_7@1/_/_/ [/‘17//-§)+§—]j/

Case  pt, /sec. 8o Hmaxe
C é Feet
1 10,000 0.70 32.2 1,468,000
2 10,C00 0.70 32.2 1,468,000
3 7,000 0.70 12,9 555,000

4 7,000 0.70 12.9 555,C00




to the following relation
R @
= .1
9=4(;) (113)

At an ealtitude of 1000 miles the accelersation is
only 0.6l times that at sea levels Therefore, for flights up
to such altitudes the essumption that g is approximately
constent is no longsr' velid, It was shown by Mslins and Smith
(Ref+ 6) that a three-step rocket could theoretically reach such
an altitude, Thus it is interesting to see how the decrease of
g will inecrease the meximum height reached by the rocket,

First the effect on powered flight in vacuo will be
oconsidered and then on coesting flight in vacuo, For powefed
flight the enelysis is based on the assumption that the thrust
is constent. However, the results cen be applied to the case
of prepulsion by successive impulses if the total number of
impulses, N, exceeds 100 as was justified in the previous
section.

The equivelent mess of gas flowing per second con-

tinuously for the case of successive impulses is

wn
P m
VA (L.1k)

Assuming that the rocket starts from rest at sea

level the equation of motion in vacuoc is

w8la



4 A
=5 =-4(1+7) + 2
at? A /-t (Lha15)

This is a non~lineer differential equation which cen
not be solved by usual means., However, for all practical pur-
poses the ratio 7%‘ during powered flight is much smaller
than 1, therefore, only first order terms in -Ré‘ occurring
in the expansions need to be reteined. This approximation

lineerizes the equetion to the form

mc

dah _ y=2
iz % (= )"L /-2 ¢ (14.16)

The solution of this equetion with the initial condition that

h=0 and %so when t = 0 is

£u fu
A—.—,@Z/—Cosﬁ/fjﬁff-f /c/e—:c——-e/il
2 R Z’/%?_; ¢ f A

(L.17)
where §= f%—%ﬁ and [L=/_744”fzt
At the end of the powered flight, the time is
{ = f = _%i—g
I m
(L.18)



Therefare, the height at the end of the powered flight is

£(r¢) £G-¢)
/‘/P:Z’{Z/f'&%ﬁ zz//o /f// z) et eeoj .
| (4e19)

If the hyperbolic cosine term end the integrals are

expanded and only first order terms in —-/—Z are retalined in

consistency with the linearization of Eq. (L.15), the equation

becones

4= gc%(“f T en /%Q/* CM// 5)/7/97&5]
¢ A P i z o0
# 73%/—2-7 /é// P log(14) 45 (116156 fejj/ (1 20)

= Hy + g%“ _Zr@g 36—[ éﬂ*é)ioj//—g)v‘;(//ﬁ 15¢+¢)]
4
=

Differentieting Eq. (L.17), end substituting the

relation of Eq. (L.18), the maximum velocity at the end of

powered flight is

// /. &) . £(1-5)
rra 2 ) Ny E0%)
l)mx ) K\% J,”A"/ %o / . ﬂft’ / xﬂy(h 21)

-83=



Agein expunding end retaining only first order terms in 7 R

Eq. (L4.21) becomes

e + 45k ”)f
_ [ clog(1-¢) 4 %%ﬁ/x-g)zfof/f-é)*24 "6 ]/

(Le22)

= Km f[“)/éf/w) /z/, g)z/g// g)reg 3§;//

/774}(

It is seen that the second terms of Eq. (L.20) and
(L4e22) are the correction to be applied to A//bo and %an
to account for the veriation of the acceleration of gravity.
Sinece both corrections are firat order approximations, they can
be expected to aﬁply approximetely alsc to the case of successive
impulses, even when the total number of impulses is less than
100,

The coasting height resched by the rocket due to its
velocity at the end of powered flight cen be obtained by

equating the inorease of potential energy during coasting

flight to the kinetic energy at the end of powered f£light. Thus
Ho 1L
Ly ?ag 24
2 max () 2
(1+%)




or

;-
/;é—':/%/»{,?‘/()/ . y 2 -/ (Lo23)

max

/ // 7‘/(’) (/’/{’M}

2 2
Putting me/zﬁ /7%) = /{0 whieh is

coasting height obtained by assuming a constant gravitational
acceleration of the value eqial to that at the height /4
i.e,, the height where coasting sterts, then Eq. (4.23) ocan

ba written

/
e - M;’M)/'/' A !
8T

Upon expanding the second term this equation becomes,

% )’
Ho=4, /*/m pad W) /“‘2‘*’

This equation shows that if the coasting flight
starts from see level, and if the maximum height reached is
about 1000 miles, the incremse due to the decresse in g is

over 25%, which is comsidereble,
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Section (III)

When the sounding rbckgt is ascending through the
atmosphere instead of in wvacuo, air resistance comes into
play, causing the aceeleration of the rocket to be reduced,
which decreases the maximum height reached, Since air resis-
tance increases with the air density end with the square of
the flight velocity, it is desirable to keep the rocket from
ascending too rapidly through the lower leyers of the atmos-
phere where the air density is high, For this reason the op-
timum initial acceleratien will no longer be infinite as shown
by Eqs (4.12b). For the case of constant thrust Maline end
Smith (Ref. 6) have found thet the optimum acceleration is
eround 30ft./sec.2, For & total number of impulses greater
then 100, the difference between propulsion by successive
impulses and by constant thrust is very small, so one may
expect the above optimum value of initial acceleration to hold
for both cases of propulsion.

The actuel amount of reduction in maximum height
due to air resistance csn be calculated by the method of
step-by-step integretion, if fair accurecy is desired. This
integration is carried out by using the fundamental equation
for wertical rocket flight which, as given in the previous

paper (Ref.6) is

7 4+ dsor GA
&tiz =d = ’j7f' /- 'i/@&fﬁ) %Z? f/b-ﬂ{{/ }W“ (Le25)

*
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GA

The significaence of the ratio W was
(4

discussed in thet paper (Ref. 6). Grester significance cen,
however, be atteched tu the wvarious terms in the equation if it
is trensformed into the non-dimensional form

| a Go
4 g z%}'*n/ } (’0?%5V:%f‘é7f)/l

— o e

N A Y

(Le26)

where ,/\_ - 2 e

In Eq. (L4.26) appear two types of significant
quantities, First, quantities, called "factors", which are
constent for sny given family of rockets, and second, two
quantities celled "paremeters", one of which is oharacteristic
for a given family of rockets but changes in valus along the
flight path, end one which depends on the physicel properties

of the atmosphere., Thus thsre are the following factors:

,@l = ratio of initial acceleration to
A "initial acceleration factor", a motor

characteristic

¢ = exhsust velocity in ft./sec. ~s "exhaust
velocity factor"”, & motot characteristic
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A = "dreg-weight factor"

g - ratio of weight of combustibles to total
initiel weight of the rocket -~ M"loading
fector™

The first two factors, i.e., the "initial secelera-
tion factor" and the "exhuast velooity factor", determine the
cheracteristics of the propelling unit for a given family of
rockets while the "drag-weight factor” and the "loading factor®
determine the physical dimensions of the rockets. The "dreg-
weight fector" is a ratio of the drag of the rocket at see
level when traveling with the velocity of sound to the initieal
weight of the rocket., Since for any given family of rocket
shapes the only terms in the factor which cen be varied are the
maximum cross-sectional aree A, end the initiel weight W,, it
is elear that if the initial weight is doubled then the cross-
sectional area must also be doubled to keep the factor the same,
The"loading fector needs to be discussed in some detail as it
does not appesar explicitly in Eq. (L.26). The Eq.(L.26) is a
differential equation of the flight path which is satisfied at
every point along the flight path; The loading factor C
comes in only when this equation is integreted and the limits
of integretion are put in. For exsmple, consider two rockets
with identicel performence factors and paremeters, with the
exception thet one has a é of 0,90 and the other has a

; of 0.50. The flight path of the two rockets will be

«B8=



identical up to the time that 0,50 times the initial weight of
the rockets is used up as combustibles. At this point the
rocket having a Z, of 0.50 will begin to decelerate while
the one having & &  of 0,90 will continue to accelerate
until the remeining combustibles are used up. It is thus seen
that the velue of {; oontrols the meximum height reached,
The two performance parsmeters are:

Jl ~ physical properties of the atmosphere called

A the "atmosphere parameter”

CD ~ 8erodynemic properties of the rocket shell
(l‘)* called the "form parameter”

The "atmosphere parsmeter” for the earthb atmospheric -
layer will, of course, be the seme for all rockets if standard
conditions are assumed end its wvalue depends only on the height
the rocket has reached above the starting point of the flight.
The "form parameter" is determined by the shape of the curve of
CD ageinst B, This curve will be eltered chiefly by the
geometrical shape of the shell although it is also affected by
the change in skin friction coefficient due to the change in
Reynold's Number. As long as the rocket belongs to a femily
that has the seme geometrical shape, which implies the seme
nose shape and the seme Z’/d ratie, that is, the ratio of
the length of the shell to the maximum diemeter, the “form

paremeter®™ cen be assumed to remasin constent.
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It is thus seen that the performence curves oslculeted

for a typical rocket will also hold for a whole femily of rockets

determined by the values of the "factors" and of the "parsmeters
of the typicel rocket and the design of & rocket to meet certain
prescribed requirements is greatly simplified. Furthermore, for
a good rocket form design the varietion of —Z'% 53 , the
form parameter, at the same values of B is small, Also, the

deviation from standard atmospheric characteristics cannot be

very large, Then, in view of the fairly accurate but not exact
baaic ascumption of constant thrust, it is justified to use the
seme deta for these two parameters for all cases, Thus, the

performance problem is further simplified end depends only upon

4. -
the four performence feaotors l?g y C A and &
(/]
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CONCLUS1ON

This study shows that a sounding rocket propelled
by successive impulses ocan theoretically reach heights of
much use to thoseinterested in obtaining date on the structure
of the atmosphere and extra-terrestiel phenomens if a propelling
unit gives an exhemst velocity of 7000 ft. per second or more,

The possibility of obtaining such exhaust velooities
depends on two factors: first, the ability of the motor to
transform efficiently the heat energy of the fuel into kinetic
energy of the exhaust gases, and secondly, the amount of heet
energy fhat ecen be libersted from the fuel. In an sctusl motoer
which burns its fuel st constant volume by igniting & powder
charge in the combustion chember the ratio of the chamber
pressure to the ocutlet pressure drops from a maximum st the
beginning of the expansion to zero at the end of the process.
It is not possible to design a nozzle that will expand the
products of combustion smoothly during the whole process,
Therefore, the attainable efficiency must be less than that
of a corresponding "constant pressure®™ motor which has e mixture
of combustibles, e.g. gasoline and liquid oxygen, fed continu-
ously into the combustion chamber at a constant pressure equal
to the maximum pressure of the "constant volume® motor.

However, very high maximum chember pressures (up to 60,000 1bs.
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per sq.in.) cen be developed in & motor using constent volume
burning, while the chember préssure of a motor using oconstent
pressure burning is limited tc much lower pressures by the
difficulty of feeding the combustibles. Therefore, the
effieiency that can be obtained frommtors using either of
these processes should not be very different. As to the heat
that can be liberated per unit mass of fuel, the present fuel,
such as nitro-cellulo#e powder for a oconstant volume motor,

is much lower then the liquid combustibles such as gasoline
and oxygen for a constant pressure motor,

These considerations indicate that the attainable
exhaust veloeity of a "constant volume™ motor for propulsion
by successive impulses will probably be lower than that of a
"sonstent pressure" motor for supplylng a continuous ULhrusb.
This is the reason why many experimenters abandoned the
fsonstent volume™ motor end turmed to the "constant pressure®
motor, the so-called liquid propellant motor. Theoretically,
this defect of the "constant volume™ motor can be compensated
if & smell total number of impulses (c.f. Fig. L.3) is used.
However, the use of few impulsses is of doubtful practical
value because the resulting extreme accelerations will be
harmfal to instruments cerried and will necessitate e heavier

construction of the rocket,
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However, even with the lower exhaust velocities of
the "constant volume™ motor it is showm by the analysis in this
paper that with the exhaust veloci’cy of 7000 f‘b./aeo. obtained
experimentally by R. H. Goddard (Ref. 1) it should be possible
to build e pgger rocket capable of rising above 100,000 feet,
Thus it seems to the author that a rocket prbpelled by

successive impulses has useful possibilities and further ex-

perimental work is Justified.
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Velocity and temperature distribution when no

Fig. 1.3

heat is +transferred to wall




Fig. 1.4 Velocity and temperature distribution when wall
temperature is 1/4 of the free stream temperature




-10! _ L L
0 2 4 M @ 8 10

Fig. 1.5 Heat balance when the wall temperature is
1/4 of the free stream temperature
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